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EXTREMAL PROPERTIES OF STABLE RESONANCE MOTIONS* 

G.V. KASATKIN 

A system of differential equations, satisfying the phase volume preservation condi- 
tion , is analyzed. It is shown that the Liapunov-stable resonance solutionsofthis 
system have extremal properties which can be elicited as functionals defined on the 
system's trajectory set. 

The finding of stable resonance solutions is a part of the general problem of pickingout 
the stable solutions of differential equation systems,formulated in /l/. A partial solution 
of it is given by an integral stability criterion /2/ valid for nonconservative mechanical 
systems whose motions are described by systems of equations containing a small parameter.This 
criterion emphasizes the extremal properties of the resonance solutions. On the basis of an 
extremal test introduced an attempt was made in /3/ to justify the evolution of the planets 
of the Solar system. Another approach to the problem of extremal properties of stable reson- 
ance motions is developed in /4/, where by example of a concrete mechanical system the pos- 
sible validity of the following hypothesis was proved for a certain classofmechanicalsystems. 
Let lJ(q,t) be a force function dependingonthe generalized coordinate vector q and periodicin 
the independent argument t with period T and let q(qO,qo’.t) be the solution of the system of 
equations of motion with initial data gO,qO' at instant t = 0. It is assumed that the function 
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1 

tu (pa, q,J’)> = lim - 
m-m mT s u @I (qov Bo’, t), t) cft 

Cl 

(m is an integer) reaches maximum values on the set of initial states at the points 981 4*' 
corresponding to the initial values of the Liapunov-stable (with respect to variables q? q') 
resonance motions. An expanded proof of the theorem stated in /5/ is given below, completing 
certain gaps in the hypothesis presented. 

1. We consider the nonautonomous periodic system 

dxldt = X(x, t), X (x, t + 1) = X (x, t), x E I?“, div X s 0 (1.1) 

The last condition (preservation of phase volume) is satisfied, for example,by canonic systems. 
Let Go c R” be the set of initial state, defined at the instant t= 0 and g,' be a transorma- 
tion prescribed by system (1.1) for t> 0, which takes the system from the initial point XE 
Go to a point xt E R", i.e., xt = g,'s is the solution of system (1.1) with the initial value 
5. It is assumed that the solutions satisfy the conditions of uniqueness and of continuous 

dependence on the initial data. 

Theorem. In order that system (1.1) admit of a Liapunov-stable periodic solution of a 
period that is a multiple of unity, it is necessary and sufficient that the following condi- 
tions be fulfilled: 

1) the system admits of an open set _4,,cGo, mes(AO)#O, such that the set {xl, f> 0, x E 
Ad of semitrajectories is embedded in some compactum M (a compact of Hausdorff space); 

2) a function X(X, t) from the set of functions continuous in x on Mand continuous and 
periodic in t with a period commensurable with unity exists such that the function 

t 
,K (4 = lim + !$ x (xt, t) dt (1.2) 

1-m 
0 

is continuous at point YE A o and takes a strict extremal value (minimum or maximum) at this 
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point; the point y is the initial value of the desired periodic solution_ 

The existence of function K(r) is guaranteed when condition 1 is fulfilled for almost 
all XC? A,. This follows from the existence of a compactum BcM, mes (B)#O, invariant re- 
lative to gem-transformations (m belongs to the integer set 2). Indeed, consider an open 

measurable set En= z A,, where 
k=o 

Al, = gokA,, k E Z. Obviously, &'B' c By. From the go' -trans- 

formation's property of phase volume preservation we conclude that g,,lBfi==B” and, consequently, 

g,lB = B, where B=B”. The conclusion on the existence of function K(I) for almost all s=B 

can be obtained by extending the proof of the ergodic theorem for autonomous systems /6/ to 

the case of periodic systems (1.1) admitting of an invariant compactum B (relative to go"'- 
transformations). 

Let p(z,y) be the Euclidean metrics of the phase space R"',S(a,y)= {m: p (5, y)< E) be an 

open sphere of radius E centered at point y. By the continuity of function K(z)at point y 
we mean continuity in the sense of the topology induced of the definition set of this function 

by the topology of space R". The condition of strict minimum of function K(x) atpoint y im- 
plies the following: a sphere s(R, y)CAo exist such that 

inf I K (z) - K (y) 1 > 0, D (R, E) = s’ (R, Y) \ s’ (E, Y) 
rED(R,e) 

for any e from the interval (0, R). The prime denotes the set's points at which the function 

K (5) is defined (S' C S, mes (S’) = mes (A’)). 
Let us now prove the theorem. 

Sufficiency. Without loss of generality we can take it that the function X(X, t) is 

periodic with unit period and furnishes the function K(r)with a minimum equal to zero. We 

consider the trajectory leaving the point x,, n E Z, at instant t = 0. From (1.2) follows 

K (~3 = K (x) (1.3) 

We fix an arbitrary e=(O,R) and we find 

As a consequence of the continuity of K(x)at point y there exists &~(O,e)such that 

K (2) < a, z E S' (6, Y) (1.5) 

We denote the sets s(R, y) and S(6,y)by a, and fl,, and we consider the sets a, = g,%,, fi,, = 

go"p,,. We have 

B,C a,* mes (a,) = mes (q) > mes (p,) = mes (83 > 0 (1.6) 

By virtue of the properties of the &"-transformation and of, equality (1.3) the inequalities 

(1.4)r (1.5) are preserved if D(R,e) and S'(s, y) are replaced by c&,\ fi;I and fi;,respectively. 

Let us show that y is the initial value of a periodic solution of a period cummensurable 

with unity. For this it is sufficient that the condition yNEaO be fulfilled for some posi- 

tive integer N (then from the theorem's condition 2 it follows that yN = y). If we assumethe 

contrary, then from (1.3)- (1.6) it follows that for any n,m~Z, n#m, the sets a,, em 
either do not intersect or their intersection lies in the set cc,, \ 0,. In both cases &,\ 

Pm = 0. Hence it follows that a countable number of nonintersecting sets &, of one and the 

same nonzero measure have been imbedded incompactum B, which cannot be. The contradiction 

obtained proves the existence of an Nfor which yN = Y is fulfilled, i.e., y is the initial 

value of a periodic solution. 

Let us show the Liapunov stability (with respect to variable 2) of this solution.Wetake 

an arbitrary 8=(&R). As a consequence of the continuity of the solution with respecttothe 

initial data there exists E,E (0, e) such that 

rt E S (e, ~9, x E S (err Y), te [O, Nl (1.7) 

Analogously to how conditions (1.4), (1.5) were obtained, we derive 

Ir' (2) > a, z ED (e, e,); K (2) < a, z E s’ (d, Y) (1.8) 

a= id K (x), D (e, el) = s’ (E, y) \ 8’ (e,, Y), 6 E (0, 81) 
rpD(e,ad 

Allowing for (1.3), (1.8) and the fact that y is a fixed point of the gtk-transformation 
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when kEZ, we obtain 

From the properties of 

gr (S’ (6, l/N c 8s h Y) 
the got -transformation follows 

fl (8 (6, Y)) c s (El, Y) 

Combining (1.7) and (1.10) we conclude that the solution 

(1.9) 

(1.10) 

{Yt, t >O) is stable. 

Necessity. The necessity of fulfilling the theorem's condition 1 in the case when 

system (1.1) admits of a stable periodic solution {Yt, t> 0) with a period commensurable with 

unity is obvious. In order to satisfy condition 2 we consider the function x(5, t) = p (5, Yt). 
The function 

* 

K (x) = lim + 5 P (xt, Yt) dt 
t-m 

0 

determines the mean distance between the trajectories with initial values x and y. It canbe 

shown that function K(x) is continuous atpoint Y and at it takes a minimum value equalto zero. 

We fix an arbitrary el>O and we find E% E (0, Ed) such that p (xl, Yr) < e, for t > 0, 5 E s (a~, 

Yh We consider an arbitrary eE(O,ep). Let us show that any trajectory starting from set 

S (ea, y)\ S (e, y) at instant t = 0 cannot approach arbitrarily closely the periodic trajectory 

being investigated at the succeeding instants t> 0. It is well known that any s-neighbor- 

hood of point y contains a compactum B, invariant relative to grk-transformations (N is the 

minimal whole period of solution Y,, k~ Z), and the point Y, fixed under these transformations, 

is an internal point of B, /7/. Let dt be the precise lower hound of the distance of point 

y, from the boundary of set giBe. Obviously, dt > 0 for any finite instant t. The equality 

iI&& = infte[o,Nl d completes the proof since xt@ g,lB, for SE D (e,.%). t 

Corollary. The equilibrium position {Yt EY, t> 0) of an autonomous or nonautonom- 

ous system (1.1) is stable if and only if condition 2 is fulfilled. 

Together with the periodic solutions of system (1.1) we have considered we can have re- 

sonance solutions of the form 

5 = ot -1. z; x,2, 0 E R" (1.11) 

where each coordinate oi of the vector ois commensurable with 2n, while z = z(t) is a vector 

periodic in t, admitting of a period that is a multiple of unity. The replacement of vari- 

ables x by z in accord with formulas (1.11) reduces the finding of the resonance solution (1.11) 

to the search for a periodic solution z(l) of a new system. If after the replacement indicated 

the right-hand side of system (1.1) retains the property of periodicity with respect to the 

variable t occurring explicitly in the equation, then the stable periodic solution z(t), and, 

consequently, the stable resonance solution (1.11) can be elicited by the extremal properties 

of the mean values (1.2) of certain functions x (x, 0. Such a case arises, for example, if 
system (1.1) is (Zn)-periodic in each of the rotational coordinates xi(Y # 0). 

The theorem presented can be considered a justification and a generalization of an idea 
suggested in /4/. Resonance planar rotations of a satellite around the center of mass in a 
gravitational field as the satellite moved on an unperturbed Keplerian orbit were investigated 

in /4/. The satellite's rotation is described by a differential equations system of type (l.l), 

(Zn)-periodic in the independent variable t;s= (6,6’),& = Xl, where 8 is the angleofdeviation 
of the satellite's axis from the orbit's radius-vector, 6’=dhldt. The solutions with the rota- 

tional coordinate 

6=*(Ph)t+*(t): p,q EZ (1.12) 

are the resonance rotations (J)(t) is a function periodic in t, with a period a multiple of 2nq). 
According to the hypothesisandthe numerical calculations the maxima of the function 

t 
K(8,, 6,‘) = lim+ 

s 
u (a (60, 60'.f), t) dt 

t-.X 0 

yield the initial values of the stable resonance solutions; u(6,t)is the problem's force func- 
tion, (2n)-periodic in t and 6. Since in this case system (1.1) is (%)-periodic in 6, the 
stable solution (1.12) satisfies the theorem, and the function U is one of the admissible x(z,t) 
-functions. Consequently, the theorem obtained gives a theoretical confirmation of the hypo- 

thesis. Together with this we stress that the hypothesis has a global character, whereas from 
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the theorem we should conclude that to each stable resonance motion there corresponds, in gen- 
eral, its own function x (5, t). 

2. As a possible application of the theorem we consider the problem of the perturbed 
motion of a rigid body in a gravitational field around the center of mass, moving along a 
perturbed orbit having a constant inclination to the ecliptic and rotating uniformly around 

the ecliptic's axis with a constant angular velocity. The equations of perturbed motion can 
be reduced to a canonic form with the Hamiltonain H*(s,t). Here x = (L, L,, I,$, a,cp) are the 
problem's evolution variables, 7 is the independent variable. H* is a (2n)-periodic function 
of T,$, 6, cp /8,9/. Consequently, the stable resonance solutions of form (1.11) with on rota- 
tional coordinate 

Y = (l/z) nz + 6 

where n is an integer and 6= 60 7 1s a periodic function of t, admitting of a period a multi- 
ple of 2n, satisfy the theorem presented. 

Let us consider the concrete value n = no and carry out the replacement (1.11) of vector 

z = (L, L,, l,$,a,cp)by z = (L,L,, l,b,a,cp), by the same token reducing the problem to a search 

for the stable periodic solution z(T)of a new equation system which too can be written in a 

canonic form with the Hamiltonian 

H (z, T) = Hy,, z - (l/t) nt,L 

We denote the period of Hwith respect to z by T,. The extremum of function 

K (Q) =E:f 5 H(zr, z)d~, 20 = 2, (0) 
0 

(if there is one) determines the existence and stability of the required periodic motion, when 

condition 1 is fulfilled. It is essential that the function K (zO) be determined along the 

exact trajectories which are unknown but can be obtained approximately, for example, by numer- 

ical methods. 
Using the fact that under certain assumptions z is the vector of slow variables, we com- 

pute the function K(z,) approximately, along the trajectories of the unperturbed problem,which 

is easily integrated (a = zO): 

To the extrema of function tH> 

tions of the averaged equations 

correspond the Cassini-motions, namely, stable resonance solu- 

of motion. It is probable that the existence and stability of 

"the generalized Cassini's laws" are an approximate description of the conditions of existence 

and stability of the resonance solutions of the unaveraged system, furnished by the extrema of 

function K(r,). We remark that the existence of such solutions has been proved by the small 

parameter method /lo/. 

3. Let system (1.1) have a periodic solution {y,, t> 0) h w ose stability can be establish- 

ed by the construction of an appropriate Liapunov function V(z, t) in the form of a bundle of 
first integrals of the system. Since V = con& on the trajectories of system (l.l), the func- 

tion 

K(x)=~i~fSV(x~,i)“=V(x,O) 
0 

takes a strict extremum at point y, corresponding to a resonance solution. Consequently, as 

such a Liapunov function we can take one of the n(x, t)-functions exhibiting the extremal 

character of the stable resonance solution. 

For example, if we are examining the case of a circular orbit of the satellite's center 

of mass in the problem in /4/, then the satellite's planar rotation is described by an autonom- 

ous canonic first-order system with a Hamiltonian H(g,p), admitting ofthesteady-state solution 
g=p=O in whose neighborhood the Hamiltonian His a positive-definite function. Since the 

equation system has a first integral H = const, the steady-state solution is stable on the 

strengthofLiapunov's theory. Consider the function x= H (q,p); we have 
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t 
limf H(cl(t),p(t))dt=H(g(O),P(O)) s t-m o 

On the strength of the theorem's corollary we have obtained a new proof of the stability of 
the resonance solution g=p= 0 with an obvious extremal content. For noncircular orbits the 
Hamiltonian H(q,p,t) of the nonautonomous problem in /4/ is not a first integral, but the func- 
tion t 

K k (Oh P (0)) = lim +- H (4 WV p (th t) d 
1-n s 

0 

can elicit the initial data of the stable resonance motions. 

4. Consider the autonomous equation system 

d&t = X (x), x E R", div X E 0 (4.1) 

Let the system be 2n -periodic in the variables x1,.. .,xh and a periodic in the remainingvari- 
ables zk+l, . . ., P. From the phase space R" we pass to the phase cylinder 

n = lX1lmodBn x . . . x[sklmod2n x R"-k 

We assume that on the phase cylinder there exists a compactum Mof nonzero measure, invariant 
relative to any gi -transformations. The extremal properties of the stable resonance solu- 
tions of system (4.1) are established by the theorem proved, if we replace the setof functions 
~(2, t) examined in the nonautonomous case of (1.1) by a set of functions continuous in z onM 
and periodic in t (without restrictions on the value of the period). 

The author is deeply grateful to V.V. Beletskii for useful advice and for help in solving 
the problem given. 
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